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A statistical molecular two dimensional growth model is proposed of the reaction between the 
solid sodium carbonate and the gaseous sulphur dioxide based on the assumptions that the dis­
tance between the molecules and the growth centers and the velocity of the reaction front advance­
ment exhibit a normal distribution. The model proposed reproduces perfectly the course of the 
excess kinetic function which has been found with this reaction by experiment. The model takes 
into account even the effect of the gas phase on the reaction rate and interprets the reaction half­
time as the mean square time within which the reaction front advancing from the growth center 
reaches the molecule of the solid. The limitations of the model proposed are discussed. 

The results of a rather thorough study of the reaction rate between the solid sodium carbonate 
and the gaseous sulphur dioxide have been summarized quantitatively into a rate equation! 

(1) 

where x denotes the conversion degree of the solid phase and the reaction rate r has been referred 
to one mol of the solid, i.e. it has been defined as a time change of the degree of conversion 
dx/dt. We have succeeded in interpreting the experimentally found dependence of the effective 
rate constant k(psoz' PHzO) on partial pressures of sulphur dioxide, Pso

2
, and of w~ter vapour, 

PHzO' in terms of the theory of absolute reaction rates1, nevertheless, the dependence of the reac­
tion rate on the degree of conversion contained in the equation (1) remained an empirical descrip­
tion only. In the paper! an excess kinetiC function, SE' has been defined 

(2) 

that had to express the deviations from the reaction course of the simplest twodimensional growth 
model, and the dependence of which on the degree of conversion has been found empirically in the 
form 

SE = P(1 - x), (3) 
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where P is a proportionality constant. In a subsequent paper2 we have attempted at interpreting 
this very simple course of the excess kinetic function by means of a growth model in which we have 
assumed that all the growth elements are geometrically similar and that they differ in their sizes 
only. By comparing the above model with the reaction course found experimentally, we have 
succeeded in deriving a frequency function of growth element sizes, the statistical significance 
of this function, however, remained unexplained. A probable cause of this difficulty has been 
seen in the fact that the model mentioned above had not taken into account the possible deforma­
tions of growth elements on their mutual contact. 

Within the frame of a simple naive model, however, it is very difficult to take 
quantitatively into account the deformations of elements growing from randomly 
arranged centers, and therefore, an attempt is made in this paper at interpreting the 
found kinetic function by means ofa statistical model "ab initio". 

THEORETICAL 

Elementary Conceptions 

In the same way as previously2 let us consider a growth model of the given chemical 
reaction with an instantaneous nucleation. The course of such a reaction is characte­
rized by a growth of a great number of growth elements which grow from growth 
centers (nuclei) the arrangement of which on the surface of the solid is random. 
The individual growth elements can grow so long as their growth is not hindered 
by neighbouring growth element. Owing to the random arrangement of the growth 
centers on the surface of the solid, all the growth elements cannot attain the same 
size, and owing to the mentioned deformations of growth elements on their mutual 
contact, the shape of the growth elements will not be the same. . 

With respect to the complex nature of the model mentioned above a causal geo­
metric description does not appear feasible, and, therefore, in the following we shall 
not consider the occurrence probability of different elements2 but we shall focuss 
our attention to occurrence probability of molecules of the reactive solid in depen­
dence on their. distance from the growth centers of growth elements. Further on, we 
shall assume that this probability has a random distribution. The term "molecule" is 
used here and in the following as an abbreviation for a reacti6n unit of the solid 
complying with requirements of stoichiometry, e.g. a carbonate ion. 

In addition to the random arrangement of growth centers in this model, it is neces­
sary to consider that the growth velocity of all the elements will not be the same in a gi­
ven direction and consequently that the velocity with which the reaction front 
advances from the growth center towards the considered molecule of the reaction 
solid will exhibit a random distribution as well. It follows from what has been 
said that we have to deal with the occurrence frequency of molecules of the reacting 
solid as well from the point of view of their distance from the growth centers as from 
the point of view of velocities with which the reaction front approaches them. Lacking 
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further informations we shall assume that all the primary random quantities exhibit 
a normal distribution. 

Velocity Distribution 

In the first approximation, we shall consider the twodimensional growth of elements 
mentioned above, i.e. the advancement of the reaction front as planar. In this case 
the reaction front can advance in directions of two perpendicular axes of coordinates. 
Let us denote the velocity component of the advancement in the direction of abscissa 
as e. Then according to the assumption mentioned above the occurrence probability 
of a molecule which is crossed by the reaction front with a velocity e is given by the 
normal distribution and, therefore, the frequency function p(~) of this distribution 
will be of the following form 

(4) 

if the occurrence probabilities in the positive and negative direction are equal. 
The quantity Uv in this equation represents a parameter the square of which is equal 
to the dispersion of this distribution and therefore it may be interpreted as a mean 
square velocity of advancement in the direction of abscissa. Further on, if the velo­
city component of the reaction front advancement in the direction of ordinate axis 
is denoted as tf the occurrence probability of a molecule which is crossed by the 
reaction front with a velocity tf is described under the same assumption as above 
by a frequency function p(tf) in a similar form 

(5) 

where the mean square velocity u" is the same as in the equation (4) under assumption 
that the distribution considered is invariant with respect to the exchange of both 
coordinate axes; in the opposite case the growth in one of both directions would be 
preferred. Now let us consider the occurrence probability of a molecule which is 
crossed by the reaction front in an arbitrary direction with an absolute velocity x. 
This velocity can be expressed by means of velocities in directions of both coordinate 
axes through the relation 

(6) 

sothat the occurrence probability of molecules which are crossed by the reaction 
front with an absolute value of velocity v or smaller, i.e. the distribution function 
P(x < v), will be given by the relation 

P(x ~ v) = ffp(e, tf) de dtf , (7) 
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where the integration is meant over the whole range of variables ~ and 17 limited 
by the condition 

(8) 

and the quantity p(~, '1) represents the density of occurrence probability of a molecule 
which is crossed by the reaction front with velocities ~ and 17 in directions of both 
coordinate axes. If both these velocities are independent the following relation is 
valid 

(9) 

and on substituting the relations (4), (5), and (9) into the equation (7) we obtain 
a distribution function 

(10) 

By transforming the double integral in the equation (10) into polar coordinates 
we obtain (the functional determinant of this transformation is equal to X) 

P(v) = - -2 X exp - ~ .dx de 1 f2nfv ( 2 ) 

27t0"0 0 0 20"0 
(11) 

and upon integration the distribution function assumes the following form 

(12) 

From this equation we obtain by differentiation the frequency function p(v) of the 
distribution of molecules of the solid according to the absolute velocity of advance­
ment of the reaction front in the form 

(13) 

Distance Distribution 

In a similar way as with the velocity distribution, we shall limit our considerations 
on the distribution of molecules according to the distance from the growth centers 
to the planar approximation. If the distance component of a molecule from the growth 
center in the direction of abscissas is denoted as v and the distance component in the 
direction of ordinate axis as p., the occurrence probability of a molecule at a distance 
v from the center will be given by the normal distribution with a frequency function 
p(v) 

(14) 
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where the parameter (jz can be interpreted as a mean square distance of molecules 
from growth centers in the direction of the abscissa axis . Analogously we obtain 
the frequency function P(fl) for the distribution in the direction of ordinate axis 

(15) 

where the parameter (jz has the saJ;lle value as in the equation (14) under conditions 
given in the formulation of the equation (5). 

Further on, let us consider the occurrence probability of a molecule at a distance <p 
from the growth center in an arbitrary direction. This distance can be expressed 
in terms of distances in directions of both coordinate axes by the relation 

(16) 

so that the occurrence probability of molecules occurring at a distance z or smaller 
from the growth centers, i.e. the distribution function p(<p ~ z) , will be given by the 
relation 

p(<p~ z) = If p(v, fl) dv dfl, 
.J(.2+1'2);:;;z 

(17) 

where the quantity p(v, fl) represents the density of occurrence probability of a mole­
cule at distances v and fl in directions of both coordinate axes. If these distances 
are mutually independent, we can arrive from the equation (17) in an utterly analog­
ous way which has been used in the velocity distribution to the frequency function 
p(z) of the distribution of molecules according to their absolute distances from the 
growth centers in the form 

(18) 

Reaction Time 

In the preceding paragraphs we have arrived at the probability densities (frequency 
functions) of molecules which are occurring at a distance z from the growth centers 
and which are crossed by the reaction front with a velocity v. By means of these 
two quantities, z and v, we can now define a new quantity 1: by the relation 

1: = z/v, (19) 

from which its physical meaning is evident, if the velocity of the reaction front 
advancement is constant. The quantity 1: represents the time in which the reaction 
front advancing with a velocity v attains the distance z from the growth center. 
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Therefore, the quantity 't" represents the time in which a molecule occurring at a dis­
tance z from the growth center and crossed by the reaction front with a velocity v 
enters the reaction. In agreement with this physical meaning the quantity 't" can be 
denoted as a reaction time of a molecule of the solid. 

It follows from the given interpretation of the quantity 't" as a reaction time of the 
molecule that in the moment t from the beginning of the chemical reaction all the 
molecules have reacted with the reaction time smaller or ,equal to the value of the 
current time, i.e. all the molecules for which 't" ~ t. The ratio of these reacted mole­
cules to all the molecules which can react is, according to the definition, equal to the 
conversion degree of the solid x, and in a statistical interpretation this ratio is equal 
to the probability that in the time t the molecules will react with a reaction time 
smaller or equal to t, or to the occurrence probability of molecules for which the 
inequality 't" ~ t is valid. Therefore, the conversion degree of the solid x is equal 
to the distribution function p('t" ~ t) 

x = P('t" ~ t) = P(t). (20) 

The equation (20) gives the degree of conversion x as a function of time t, and 
to express this dependence explicitly it is necessary to know the distribution of reac­
tion times 't". 

Reaction Time Distribution 

The law of the distribution of reaction times can be determined from the definition 
equation (19) in combination with the functions (13) and (18). The density of occur­
rence probability of molecules occurring at a distance z from the growth . . center 
and crossed by the reaction front with a velocity v, i.e. the quantity p(z, v), is given 
according to equations (13) and (18) by the expression 

(21) 

if both the variables are independent. The occurrence probability of molecules with 
the reaction time smaller or equal to t, i.e. of molecules for which 't" ~ t or according 
to (19) z ~ vt, is then given by the relation 

where the integration is meant over the range of variables z and v which fulfil the 
condition 0 ~ z ~ vt, since all these variables are defined in the range of positive 
values only. Therefore, the integration of the double integral in the equation (22) 
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may be carried out by a twofold integration, viz . first according to z from zero to vt 
and then according to v from zero to infinity, so that the following relation is ob­
tained 

p(?: ~ t) = p{t) = _1_2 fOO v exp (- V

2

2
) [f"1 Z exp (- Z22) dZ] dv. (23) 

(O"%O"") 0 20"" 0 2a% 

Having carried out both integrations indicated in the equation (23), we arrive at 
an expression for the considered probability in the following form 

(24) 

As mentioned above, the parameter O"z has the meaning of the mean square distance 
of molecules from growth centers and the parameter 0"" denotes the mean square 
velocity of the advancement of the reaction front. In analogy with the equation (19) 
we can now define a new parameter aT by the equation 

(25) 

and in this way the relation (24) can be simplified to the form 

(26) 

The physical meaning of the parameter 0". is evident from its definition (25); it can be 
denoted as a mean square reaction time of molecules of the solid. 

Degree of Conversion and Reaction Rate 

By combining the equations (20) and (26) we obtain directly an expression giving 
the degree of conversion as a function of time 

(27) 

By differentiating this expression with respect to time we obtain the reaction rate r 

as a function of time in the following form 

(28) 

If the value of t from the equation (27) is substituted into the expression (28), the 
final expression for the reaction rate as a function of the degree of conversion follows 
in the form 

(29) 
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Therefrom, an expression follows according to the definition! for the excess kinetic 
function 

SE = 1'(1 - X), (30) 

where I' is a proportionality constant the numerical value of which is irrelevant2
• 

DISCUSSION 

It follows from the comparison of the equation (1) with the equation (29) that the 
model described above reproduces the experimentally found dependence of the reac­
tion rate between the sulphur dioxide and the sodium carbonate on the degree 
of conversion quite exactly in the whole range. The same conclusion is valid of course 
even for the excess kinetic function as it is evident from a comparison of the equation 
(3) with the equation (30). The basic idea of the model described consists in an as­
sumption that the degree of order in the solid sodium carbonate studied is so low 
that both the advancement of the reaction front and size of growth elements are 
of random nature. The existing results of the study of crystal structure of sodium 
carbonate prepared from a melt or by dehydratation of a hydrate indicate3 .4, that 
a significant gradual decrease of symmetry takes place with decreasing temperature; 
it may be expected that in samples prepared by the decomposition of the hydrogen­
carbonate! the degree of order will be even substantially lower, as can be seen from 
the reactivities of samples prepared from the hydrate and from the hydrogen-carbon­
ate l which differ in orders. Therefore, the existing experimental knowledge indicates 
the palusibility of the basic assumption in the model described. 

The quantitative relations obtained from this model permit some inteiestinginter­
pretations. For instance it is evident from the equation (27) that in the moment when 
the current time assumes the value equal to the mean square reaction time, i.e. 
when t = Ut> the degree of conversion reaches the value of one half. The statistical 
parameter u. introduced above with the meaning of the mean square reaction ti.me 
represents, therefore, a simple macroscopic quantity denoted generally as the reaction 
half-time. 

Further on, the macroscopic effective rate constant k can be interpreted in statisti­
cal terms by comparison of equations (1), (25), and (29) from which it follows 

(31) 

According to the above mentioned assumption of instantaneous nucleation the mean 
square distance of molecules from the growth centers, i.e. the quantity Uz , will be 
dependent on the arrangement of growth centers on the surface only; consequently 
the parameter U z will depend on the properties of the solid phase only and not 
on the properties of the gas phase. On the contrary, it may be expected that the mean 
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square velocity of the advancement of the reaction front, i.e. the quantity, C1v , will be 
affected also by the composition of the gas phase. We can assume in the first approxi­
mation that the velocity of the reaction front advancement will be proportional to the 
number of impacts of molecules of the reacting gas component on the surface in the 
position of the reaction front, i.e. that it will be proportional to the partial pressure 
of the sulphur dioxide. According to what has been said and according to the equa­
tion (31), the effective rate constant ought to be proportional in the first approxima­
tion to the partial pressure of the sulphur dioxide. This prediction following from the 
statistical model is in full agreement with reality 5 in the range of low partial pres­
sures of sUlphur dioxide. 

The model described has been originally designed with the purpose to give an inter­
pretation of the excess kinetic function, i.e. to interpret the experimentally found 
dependence of the reaction rate on the degree of conversion of the solid phase only. 
The results achieved, however, indicate that the capacity of this model is probably 
greater and that it is principially able to take into account even the effect of the gas 
phase. 

These facts undoubtedly increase the plausibility of the model proposed even 
though we cannot disregard from some inherent limitations. In the first place, the 
possibility is lost of forming more sophisticated ideas of the reaction course propre; 
these limitations are of course inherent in all the theories based on statistics. Further 
on, however, the possibilities are here rather limited of obtaining characteristic 
statistical parameters of physical meaning which would open new prospects or would 
be accessible to an independent verification. It is possible to determine only the mean 
square reaction time of molecules (its value assumed units or tenthes of minutes 
according to the reaction conditions) as it has been shown above, however, it is 
quite impossible to evaluate from the measurements of the reaction rates the mean 
square velocity of the reaction front or the mean square distance of molecules from 
the growth centers. On the other hand, it is possible to interpret this fact as a theoreti­
cal illustration· of a generally known experience that the amount of informations 
on the reaction course pro pre which can be obtained from mere kinetic measure­
ments is rather limited. 
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